Questões de Concursos - Números Complexos - Exercícios com Gabarito

Questões de Concursos Públicos - Números Complexos - com Gabarito. Exercícios com Perguntas e Respostas, Resolvidas e Comentadas. Acesse Grátis!


A respeito dos números complexos, julgue o item a seguir.

Se n > 1 for um número inteiro e se ω ≠ 1 for uma raiz n-ésima da unidade (isto é, ωn = 1), então 1 + ω + … + ωn - 1 = 0.
No  plano  complexo,  duas  partículas,  A  e  B,  desenvolvem as trajetórias dadas por A(t) = 3cos(t) + 2i sen(t),  0 ≤ t ≤ 2π e B(t) = e–t(cos(t), sen(t)), 0 ≤ t. 

Considerando esse caso hipotético, julgue o item a seguir. 
As  trajetórias  dadas  possuem  mais  de  um  ponto  em  comum. 
No  plano  complexo,  duas  partículas,  A  e  B,  desenvolvem as trajetórias dadas por A(t) = 3cos(t) + 2i sen(t),  0 ≤ t ≤ 2π e B(t) = e–t(cos(t), sen(t)), 0 ≤ t. 

Considerando esse caso hipotético, julgue o item a seguir. 
A  trajetória  da  partícula  A  é  coincidente  com  a  curva  descrita pela equação complexa |z + √5|+|z – √5| = 6. 
(UFR-RJ) Para que a equação 2x2 + px + q = 0, com p e q reais, admita o número complexo z = 3 – 2i como raiz, o valor de q deverá ser:
No  plano  complexo,  duas  partículas,  A  e  B,  desenvolvem as trajetórias dadas por A(t) = 3cos(t) + 2i sen(t),  0 ≤ t ≤ 2π e B(t) = e–t(cos(t), sen(t)), 0 ≤ t. 

Considerando esse caso hipotético, julgue o item a seguir.
Exatamente  duas  das  raízes  complexas  da  equação   z4  = 16 estão na trajetória da partícula A. 
No  plano  complexo,  duas  partículas,  A  e  B,  desenvolvem as trajetórias dadas por A(t) = 3cos(t) + 2i sen(t),  0 ≤ t ≤ 2π e B(t) = e–t(cos(t), sen(t)), 0 ≤ t.

Considerando esse caso hipotético, julgue o item a seguir.
A distância entre os pontos A(π/2) e B(0) é maior que 3. 
(FEI-SP) Uma das raízes da equação x2 – 2x + c = 0, onde c é um número real, é o número complexo z0 = 1 + 2i. É válido afirmar-se que:
Julgue o item seguinte, a respeito de números complexos e funções de variáveis complexas.

No plano complexo, os números complexos z que satisfazem à equação |z| = |z + 1| estão sobre a circunferência de centro na origem e de raio 1/2 .
A respeito de números reais e números complexos, julgue o item subsecutivo.
Se z₁, z₂ e z₃ forem as raízes cúbicas complexas de 1, então o número z₁ + z₂ + z₃ será real.
A respeito dos números complexos, julgue o item a seguir.

Se n for um número par e se p for um número real diferente de zero, então o polinômio zn + p = 0 tem, necessariamente, duas raízes reais distintas.